CHAPTER 7 BIOLOGY – The Working Cell: Energy from Food

- **Biologists classify/group organisms by how they get their food.**
 - **Autotrophs** = “self feeders”; make their own food
 - Make food through the process of photosynthesis (using the sun’s energy to combine water and carbon dioxide and make sugar)
 - Also called producers
 - **Heterotrophs** = organisms that cannot make their own food
 - Also known as consumers (get their energy by eating producers or other consumers)
 - Includes humans

- **Realize that life on earth is solar powered:**
 - Producers depend on the sun for their energy source; heterotrophs then depend on producers to supply them with the energy and materials they need for life.

- **CELLULAR RESPIRATION:**
 - **Glucose + Oxygen → ATP + CO₂ + H₂O**
 - Chemical process that uses oxygen to convert the chemical energy stored in organic molecules into ATP.
 - **ATP** = **adenosine triphosphate**; used by cells in plants and in animals as their main energy supply.
 - **Chemical energy from glucose (sugar) is stored in ATP.**

- **PHOTOSYNTHESIS:**
 - **H₂O + CO₂ → Glucose + Oxygen**
 - Light energy
 - The light energy is used to rearrange the atoms in the carbon dioxide and the water.
 - The oxygen is used during cellular respiration to release the energy stored in the glucose; this released energy allows the cells to produce ATP.
 - **Photosynthesis is only performed in autotrophs, but both autotrophs AND heterotrophs perform cellular respiration!**

- **What is energy?**
 - The ability to perform work
 - **Kinetic energy** = the energy of motion
 - **Potential energy** = stored energy that can be converted to kinetic energy
 - **Energy cannot be created and it cannot be destroyed; it can only be converted from one form to another.**
 - **Chemical energy** = a type of potential energy stored in chemical bonds
 - **Calorie** = the amount of energy required to raise the temperature of 1 gram of water by 1 degree Celsius.
 - 1 kilocalorie = 1,000 calories (the “calories” shown on food labels are actually kilocalories).
- **Metabolism**: the sum of all the cell’s chemical processes.

 - **ATP**:
 - Provides energy for cellular work.
 - The three phosphate groups are the source of energy for most cellular work; as a phosphate is broken off of ATP (and ADP is formed), energy is released, and that energy is used to do work.
 - What type of cellular work requires ATP?
 - Chemical work (building large molecules like proteins)
 - Mechanical work (muscle contraction)
 - Transport work (pumping solutes across a membrane)
 - ATP is constantly recycled in your cells; realize that FOOD provides the energy source for reforming ATP from ADP.

 - **More on cellular respiration**:
 - Cellular respiration is **aerobic** = requires oxygen.
 - **Basic summary of cellular respiration**: the atoms in glucose and oxygen are rearranged and carbon dioxide and water are released; the cell uses the energy released during this process to make ATP.
 - Cellular respiration can make up to 38 ATP molecules per molecule of glucose.
 - **Mitochondria (singular: mitochondrion)** = where most of the steps of cellular respiration take place.
 - The many folds found in mitochondria provide many places for ATP production to take place.

- **THE MAJOR STEPS OF CELLULAR RESPIRATION:**
 - **Step 1: Glycolysis**
 - Occurs in the cytoplasm
 - 2 ATP molecules are used to break down glucose into two pyruvate (or pyruvic acid) molecules, 2 NADH molecules, and 4 ATP molecules.
 - Net ATP production: 2 ATP
 - See p. 149, fig. 7-17 for picture description.

 - **Step 2: Krebs Cycle**
 - Takes place in the matrix of a mitochondrion.
 - Each pyruvate is broken down to carbon dioxide and many NADH and some FADH2 molecules are produced.
 - Net ATP production: 2 ATP
 - See p. 150, fig. 7-18 for picture description.

 - **Step 3: Electron Transport Chain (ETC) and ATP Synthase**
 - Takes place on the inner membranes of a mitochondrion
 - As electrons (released from NADH and FADH2) move down the ETC, energy is released.
 - This energy is used to pump protons (H+ ions) against their concentration gradient; the protons then move down their
concentration through a protein channel on the inner membrane; this protein channel is also an enzyme called ATP synthase.

- For every proton that moves through the ATP synthase protein channel, an ATP is produced.
- Oxygen serves as the final electron acceptor on the ETC; as oxygen accepts electrons, water is formed.
- See p. 151, fig. 7-19 for picture description.

- **Net ATP production:** 34 ATP.

Summary of Cellular Respiration:

- **GOAL:** to produce 38 molecules of usable energy (in the form of ATP) per molecule of glucose.

- **Glycolysis:** 2 ATP produced

- **Krebs:** 2 ATP produced

- **ETC/ATP Synthase:** 34 ATP produced.

What happens if your body cannot supply enough oxygen to meet with your body’s demands for ATP?

- **Fermentation** = process of making ATP without using oxygen

 - The only process used in fermentation is glycolysis.

 - Fermentation is used when you still need energy, but your oxygen supply is less than your oxygen demand.

 - 2 total ATP are produced during fermentation. See p. 153, fig. 7-6 for picture description.

 - The waste product formed during fermentation is lactic acid; when it builds up in the muscles, it causes soreness.

 - Fermentation also occurs in microorganisms:

 - Yeast = microscopic fungus capable of cellular respiration and fermentation.

 - When yeast are kept in an anaerobic environment (no oxygen available), they ferment sugar

 - Fermentation in yeast is different than in humans because alcohol is produced as a waste product (versus lactic acid).